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Skeletons M~

The skeleton of a region is a line structure which
represents "the essence" of the shape of the region, \
i.e. follows elongated parts.

Useful e.g. for character recognition

Medial Axis Transform (MAT) is one way to define a skeleton:
The MAT of a region R consists of all pixels of R which have more than one
closest boundary point.

MAT skeleton consists of centers of circles which
touch boundaryat morethan one point

Note that "closest boundary point"
depends on digital metric!

MAT skeleton of a rectangle shows problems: |\ 4
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Skeleton Extraction for Chinese Character
Description
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Stroke Analysis by Triangulation

Constrained Delaunay Triangulation (CDT) connects contour points to
triangles such that the circumference of a triangle contains no other
points.

CDT generates three types of tria ngles:

* junctiontriangles(green)
* noneofthetrianglesides

coincides with the contour
* sleeve triangles (blue)

* terminaltriangles (red)

Junction triangles indicate stroke intersections or sharp stroke corners
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Conditions for Junction Triangles

D>2R
always junction triangles

A curved line with angle o and outer contour radius R, drawn with a stylus
of diameter D, will generate a junction triangle if

D >R (1 +cos a/2)
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Weak Influence of Contour Point Spacing

dense spacing medium spacing coarse spacing

no junction triangles if
corners are cut
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Stroke Segment Merging

* Segments meeting ata junction
may be merged if they are
compatibleregardingorientation
and stroke width

 Segments between two
neighbouringjunctiontriangles
may be intersections with irregular
direction and stroke width

 Globalcriteriaand knowledge of
the writing system must be
invoked to resolve ambiguities
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Results of Stroke Analysis |
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Results of Stroke Analysis li
g P
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Thinning Algorithm

Thinning algorithm by Zhang and Suen 1987
(from Gonzalez and Wintz: "Digital Image Processing") Example:

Repeat A to D until no more changes:

A Flag all contour points which satisfy conditions (1) to (4)
B Delete flagged points

C Flag all contour points which satisfy conditions (5) to (8)

D Delete flagged points

Assumptions: Neighbourhood [ py | P2 | D3

* regionpixels=1 labels:
e background pixels=0 Ps | P1 | P4

e contour pixels 8-neighbours of background

P7 | Pe | Ps
Conditions:
1) 2<N(p;)<6 5) 2<N({;)<6
EZ; S(p;) (Zpll) EG; S(p;) (:pll) N(p;) = number of nonzero neighbours of p;

(3) P2 XpsXps=0  (7) pr X ps X ps=0 S(p;)=number of 0 -1 transitions in ordered
(4) ps X psX pg=0  (8) p» X pg X pg=0 sequence py, ps, ...
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Templates

A templateisa translation-, rotation-and scale-variant shape desription. It
may be used for object recognition in a fixed, reoccurring pose.

e A M-by-Ntemplate maybe treated as a Example: N
vector in MN-dimensional feature space Template fgrface recoghition

e Unknown objects may be compared with !
templates by their distancein feature space a
Distance measures: P
Z.n Pixels of image
t., pixelsof template
template
d; = E(gmn ~t)’ squared Euclidean distance = i Ui
mn b2 feature
i space
d,= E' &m—tm!  absolute distance EMN i
mn g2
d, = max 18, —1,.,| mMaximal absolute distance me o
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Cross-correlation

r= Egmntmn cross-correlation between image g,,, and template t,,

mn

Compare with squared Euclidean distance d,?:

= G =l = D 8o+ Dl =

Image "energy" 2g,,° and template "energy” 2t,,° correspond to length of feature
vectors.

Egmnl‘mn Normalized cross-correlation is independent of image
and template energy. It measures the cosine of the angle
\/Egmnztm between the feature vectors in MIN-space.

Cauchy-Schwartz Inequality:

"] <1 with equality iff g, = ¢ t,,,, all mn

10.12.15 University of Hamburg, Dept. Informatics 12



IP1 — Lecture 14: Skeletonization and Matching

Fast Normalized Cross-Correlation |

 Normalized Cross-correlation should be preferred w.r.t.
cross-correlation:
— [lluminationinvariant
— Comparableresultingvaluerange [-1, ..., 1]

e Problem:

— (non-normalized) cross-correlation can be computed efficiently
Remember Convolution Theorem, Fourier-Transform & FFT

— Normalizationis not computable using FFT!
— Computationtime is very high!
* Solution by Lewis 95: Optimize the Normalized Cross-
Correlation by means of FFT and caching strategies
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Fast Normalized Cross Correlation Il

Recall the basic equation:

Non-nomalized cross-correlation:
may be computed fast using the FFT, since:

Egmnfmn =FT"™ (FT(g)'COI’tj(FT(t))) Sum under the template:

constant for all nm,
can be precomputed

Sum under the image:
Not constant!
Changes for each position of the template!

Idea of Lewis: Use the integral image to compute the non-
constant term efficiently
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Fast Normalized Cross Correlation lli

Creation of (squared)integralimages s(u,v) and s2(u,v):
s(u, v) = g(u, v) + s(u-1, v) + s(u, v-1) - s(u-1, v-1)
s?(u, v) = g%, v) +s°(u-1,v) +s°(u, v-1) - s*(u-1, v-1)

Extraction of the sums fora window (size MXN) at position (u,v):
e~s(u+N-1, vtN-1) - s(u-1,v+N-1) - s(utN-1, v-1) + s(u-1,v-1)
ef/=s?(u+N-1,v+N-1) - s*(u-1,v+N-1) - s*(u+N-1,v-1) + s*(u-1,v-1)

Complexity analysis:
 Tablecreation needsapprox.3MxN operations
e Less than explicitly computed window sums!

In praxis: Acceleration of factors 1000 and more w.r.t. the naive
implementation!
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Artificial Neural Nets

Information processingin biological systems is based on neurons with roughly
the following properties:

e the degree of activation is determined by incoming signals
e the outgoing signal is a function of the activation
* incoming signals are mediated by weights

e weights may be modified by learning

netinput forcell; 2 w;;0,(2)

o input signal
activation ai(t) = f; (a;, 2'w; 0,(1)) for cell j
output signal oi(t) = F; (@) from cell i weight w;
output signal
Typical shapes of f;and F;: of cellj

f; Fi

cellj

o
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Multilayer Feed-forward Nets

Example: 3-layer net

e eachunit of a layer is
connected to each unit of
the layer below

output units

e units within alayer are not

connected hidden units

e activation function f is
differentiable (for learning)

‘_L input units
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Character Recognition with a
Neural Net

Schematic drawingshows 3-layer feed-forward net:

* inputunitsareactivated bysensorsand feed hidden units

* hidden unitsfeed output units
* each unitreceives weighted sum

of incomingsignals

Supervised learning

Weights are adjusted iteratively
until prototypes are classified
correctly

(-> backpropagation)

0123456789

bty
OOOOOOO‘OO output units

) /‘\')‘\'/‘\'I‘\'/‘\'I‘\"‘\"(:V(\&
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Learning by Backpropagation

nominal

output

signal 1, Supervised learning procedure:

Actual e present example and determine output error signals
output e adjust weights which contribute to errors

signal 0,

Adjusting weights:

cellj
e Error signal of output cell j for pattern p is

Opj = (tp; - 0)) J; ,(”etpf)

cell i 1; () is the derivative of the activation function f{)

Wij

e Determine error signal o, for internal cell i recursively from
error signals of all cells £ to which cell i contributes.

5pi = fi ,( netpﬁ 2 5pkWik
* Modify all weights: 4,w; = 50,0, hisa positive constant

I 1 1 1 1 1 1 I 1 The procedure must be repeated many times until the weights are
input pattern p "optimally" adjusted. There is no general convergence guarantee.
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Perceptrons |

Which shape properties can be determined by combining the outputs of

local operators?

A perceptron is a simple computational model for combining local Boolean operations.
(Minsky and Papert, Perceptrons, 69)
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Boolean functions with local
support inthe retina:

- limited diameter

- limited number of cells

output isOor 1

compares weighted sum of the g,
with fixed threshold 6:

I if Ewl.(pl. >0

0 otherwise
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Perceptrons Il

A limited-diameter perceptron cannot determine connectedness

Assume perceptron with maximal diameter d for the support of each ¢..
Consider 4 shapes as below with a <d and b>>d.

] /) ——= Y—
b
Boolean operators may distinguish 5 local situations:

Qs is clearlyirrelevant for
distinguishing between the 2
connected and the 2

D1 ?: ?s3

0, 0; disconnected shapes

For Q to exist, we must have:

+ < 9 + > 9 .
Wi QT Wy Wr @ TwyQy jl> contradiction, hence Q

+ < + > :
w0, +w; 05 <0 W@ +ws @3>0 cannot exist

I:>Zwigoi<29 ) Zwig;>20




